The elite athlete: Yes, with allergy we can

Sergio Bonini, MD, Rome, Italy, and Hershey, Pa

Key words: Asthma, exercise, athlete, allergies, exercise-induced asthma, exercise-induced bronchospasm

On August 8, 2008, Beijing will welcome the XXIX Olympic Games, and a fourth to a third of the elite athletes from many of the national delegations in the multinational crowd taking part in the Opening Ceremony will have allergic or respiratory disease according to data published for several national delegations at previous Games.1-3

Mechanisms for the high prevalence of allergic diseases, including exercise-induced bronchospasm, in elite athletes— even higher than in the general population—still wait for further research. Although moderate physical activity is suggested and appears beneficial in allergic subjects to avoid risks associated with overweight and a sedentary lifestyle, intense and prolonged physical activity has been shown to induce marked changes in several parameters of innate and adaptive immunity.4 These include a T_{H2} shift and a transient immunodeficiency that have been related to the higher prevalence of allergy and upper respiratory diseases in athletes.5 Certainly, hyperventilation and exposure to allergens and pollutants may cause bronchial hyperreactivity even in subjects with no clinical asthma and/or allergy. In this issue of the Journal, Anderson and Kippelen6 have written an outstanding manuscript reviewing exercise-induced asthma and exercise-induced bronchoconstriction and the varied presentations depending on the type of sport and the athlete. Along with the discussion of pathophysiology is an explanation of why and how therapies are successful and why at times the contrary occurs.

Surprisingly, however, in spite of the high prevalence of allergic diseases in elite athletes, allergy tests are often not part of the routine medical examination in sports medicine. This is even more questionable when considering that the treatment of allergic athletes implies several important issues such as environmental control, use of drugs that may affect vigilance and performance, or therapeutic use exemption of antiallergic and antiasthmatic drugs included in the list of substances prohibited by the World Anti-Doping Agency in and out of competition.7 Therefore, we strongly recommend that standardized practice parameters are set to include allergy assessment among clinical investigations to be performed in athletes and nonprofessional exercisers when indicated.

In 2002, before the Salt Lake City Winter Games, the International Olympic Committee was extremely concerned about the wide and increasing use of β_{2}-adrenergic agents by athletes and in response set strict criteria that required documentation of asthma in an attempt to limit the use of these drugs.

Certainly, the use of β_{2}-agonists in the context of exercise implies not only their potential, and controversial, effects on performance but also safety issues when considering the US Food and Drug Administration black box and the additional safety concerns that these drugs may have in elite athletes because of the intense cardiovascular and respiratory stress they undergo during competition.8-11 Weinberger’s article12 in this issue discusses the role β-agonists in exercise, and he calls special attention to the potential tolerance induced over time with routine use of β-agonists. In fact, the role of long-acting β-agonists in exercise is challenged by the evidence of the loss of a bronchoprotective effect by albuterol when using either formoterol or salmeterol on a routine basis.

Criteria for diagnosing asthma in athletes have been an object of wide scientific debate and have been recently revised by the International Olympic Committee, as summarized in the Workshop Summary. In the article by Fitch,13 the author reports that the International Olympic Committee requests a positive bronchial challenge for the confirmation of exercise-induced asthma or exercise-induced bronchoconstriction in athletes to obtain permission for the use of β-agonists. Because the International Olympic Committee requires objective evidence of asthma, exercise-induced asthma, or exercise-induced bronchoconstriction to be approved for using β-agonists, one of the major questions that arises when screening athletes for asthma is which test to use.

This issue of the Journal reviews exercise challenge tests and their surrogates that may be useful to evaluate bronchial hyperreactivity in athletes. These challenge tests can be used to diagnose asthma, help exclude diseases that mimic asthma, and can be used to confirm control of the asthma before participating in activities known to trigger exercise-induced bronchoconstriction—for example, scuba diving. Rundell and Sled14 also address the difference between direct and indirect challenges, pros and cons of the different challenges, how to interpret the data generated from the test, and standardized procedures to be used to assess the athlete.
In Fig 1, we list the antiallergic and antiasthmatic medications that are banned (red), restricted and under Therapeutic Use Exemption (yellow), and permitted by the World Anti-Doping Agency (green). The World Anti-Doping Agency Web site has a site-specific section for asthma therapies. Both corticosteroids and β-agonists can be used but require the Therapeutic Use Exemption application procedure. Alternatives to both are leukotriene receptor antagonists, anticholinergics, sodium chromoglycate (chromones), and theophyllines (xanthines), and the use of these alternate agents is not restricted.

In summary, there is no doubt that allergic and respiratory diseases have the potential to interfere with performance. However, many athletes with allergic diseases, including asthma, will successfully compete in the games, and we expect some will go on to receive medals. The high number of allergic gold medalists should be an inspiration to those who participate in physical activities or hope to compete in sporting events and should reassure athletes and nonprofessional exercisers that, even with allergies and asthma, “Yes, we can.”

REFERENCES