The Effect of Age and Gender on Heart Rate Variability after Endurance Training

JAMES B. CARTER; ERIC W. BANISTER; ANDREW P. BLABER

ABSTRACT

Purpose:

This research investigated the age and gender differences in cardiovascular adaptation to a standardized/quantified endurance-training program that included two taper periods.

Methods:

The latter was analyzed from spectral analysis of electrocardiogram records of heart rate variability (HRV) at rest in groups of young (19-21 yr) and middle aged (40-45 yr), mixed gender groups (6 males and 6 females), pre- and poststandardized training. All subjects were recreational runners who completed the same 12-wk running program. Before, and subsequent to training, HRV was measured during supine rest and submaximal cycling.

Results:

There was a significant decrease in heart rate both at rest (2.7 ± 0.45 beats·min$^{-1}$) and during submaximal exercise (8.1 ± 0.67 beats·min$^{-1}$) in both age groups after training. After training, total spectral power increased ($560.7 \pm$...
308.9 ms2), as well as high-frequency power (362.3 ± 405.5 ms2), in both age groups at rest. The young group showed a greater increase in total power (849.0 ± 308.7 ms2) after the training program.

Conclusion:

It is concluded that a well-designed 12-wk endurance-training program will decrease resting and submaximal heart rate in both younger and older adults. The significant increase in HRV, total power, and high-frequency power in all groups after endurance training indicates that HRV measurement appears to provide an effective, noninvasive assessment of cardiovascular adaptation to aerobic training.

Key Words: AEROBIC EXERCISE; ADAPTATION; CARDIOVASCULAR CONTROL; BRADYCARDIA