Familial Resemblance for Muscle Phenotypes in the *HERITAGE* Family Study

JESUS RICO-SANZ1; TUOMO RANKINEN1; DENIS R. JOANISSE2; ARTHUR S. LEON3; JAMES S. SKINNER4; JACK H. WILMORE5; D. C. RAO6; CLAUDE BOUCHARD1

ABSTRACT

Introduction/Purpose:

We hypothesized that skeletal muscle histological and biochemical phenotypes aggregate within families.

Methods:

Nineteen families (78 Caucasians) from the *HERITAGE* Family Study participated in the study. Proportions and areas of Type I, IIA, and IIX muscle fibers, capillary density, and maximal enzyme activities were determined in biopsy samples from the vastus lateralis obtained in the sedentary state and after a 20-wk endurance-training program.

Results:

In the sedentary state, there was evidence for familial resemblance for Type I fiber area ($P = 0.007$), number of capillaries around Type I and Type IIA fibers
(\(P = 0.04\)), and Type I and IIA fiber areas per capillary (\(P = 0.01\) and \(P = 0.04\), respectively). Significant familial aggregation (\(0.05 > P > 0.0001\)) was observed for maximal activities of enzymes of the energy production pathways. With regard to the training response, significant familial aggregation (\(0.05 > P < 0.0001\)) was observed for maximal activities of enzymes of the energy production pathways.

Conclusion:

These data provide evidence of familial aggregation for enzyme activities of the main energy metabolism pathways of the skeletal muscle in the sedentary state and in response to regular exercise.

Key Words: Enzyme; Capillary; Muscle Fiber; Sedentary; Training

1Pennington Biomedical Research Center, Human Genomics Laboratory, Baton Rouge, LA; 2Physical Activities Sciences Laboratory, Laval University, and Laval Hospital Research Centre, Ste-Foy, Québec, CANADA; 3School of Kinesiology and Leisure Studies, University of Minnesota, Minneapolis, MN; 4Department of Kinesiology, Indiana University, Bloomington, IN; 5Department of Health and Kinesiology, Texas A & M University, College Station, TX; and 6Division of Biostatistics and Department of Genetics and Psychiatry, Washington University School of Medicine, St. Louis, MO

Address for correspondence: Claude Bouchard, Ph.D., Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808; E-mail: bouchac@pbrc.edu.

Submitted for publication September 2002.

Accepted for publication February 2003.